Tuesday, October 21, 2025

 These are a collection of Python code samples using OpenCV (cv2) that cover a wide range of aerial drone analytics use cases for urban areas. Each mini-snippet illustrates a different task typical for urban analytics from drone imagery: 

1. Object Tracking (Vehicle or Person) 

import cv2 
import numpy as np 
 
cap = cv2.VideoCapture('drone_video.mp4') 
ret, frame = cap.read() 
x, y, w, h = 600, 400, 60, 60  # ROI coordinates to start with (tune manually) 
track_window = (x, y, w, h) 
 
roi = frame[y:y+hx:x+w] 
hsv_roi = cv2.cvtColor(roi, cv2.COLOR_BGR2HSV) 
mask = cv2.inRange(hsv_roinp.array((0., 30., 32.)), np.array((180.,255.,255.))) 
roi_hist = cv2.calcHist([hsv_roi], [0], mask, [180], [0,180]) 
cv2.normalize(roi_histroi_hist, 0, 255, cv2.NORM_MINMAX) 
term_crit = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 20, 1) 
 
while True: 
    ret, frame = cap.read() 
    if not ret: break 
    hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) 
    dst = cv2.calcBackProject([hsv], [0], roi_hist, [0,180], 1) 
    ret, track_window = cv2.meanShift(dsttrack_windowterm_crit) 
    x, y, w, h = track_window 
    cv2.rectangle(frame, (x,y), (x+w,y+h), 255, 2) 
    cv2.imshow('Tracking', frame) 
    if cv2.waitKey(30) & 0xFF == ord('q'):  

       break 
cap.release() 
cv2.destroyAllWindows() 

 

2. Parking Slot Occupancy Detection 

import cv2 
import numpy as np 
 
img = cv2.imread('drone_parkinglot.jpg') 
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) 
# Threshold for pavement/light regions (empty): low saturation, high value 
mask = cv2.inRange(hsv, (0, 0, 170), (180, 30, 255)) 
kernel = np.ones((9,9),np.uint8) 
mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel) 
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) 
empty_count = 0 
for cnt in contours: 
    area = cv2.contourArea(cnt) 
    x, y, w, h = cv2.boundingRect(cnt) 
    aspect = w/h if h else 0 
    if 450 < area < 2500 and 1.2 < aspect < 2.6: 
        empty_count += 1 
        cv2.rectangle(img, (x,y), (x+w,y+h), (0,255,0),2) 
print(f"Empty spots: {empty_count}") 
cv2.imshow('Parking', img);  

cv2.waitKey(0);  

cv2.destroyAllWindows() 
''' 
Result:  

Empty spots: 1 

''' 

 

3. Road and Lane Detection 

import cv2 
import numpy as np 
 
img = cv2.imread('drone_urban_road.jpg') 
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 
blur = cv2.GaussianBlur(gray, (7,7), 0) 
edges = cv2.Canny(blur, 80, 180) 
lines = cv2.HoughLinesP(edges, 1, np.pi/180, threshold=80, minLineLength=80, maxLineGap=10) 
print(f“Lines: {len(lines)}”) 
for line in lines:  

     x1,y1,x2,y2 = line[0][0], line[0][1], line[0][2], line[0][3]  

     cv2.line(img,(x1,y1),(x2,y2),(0,0,255),3) 
     cv2.imshow('Lanes', img);  

     cv2.waitKey(0);  

cv2.destroyAllWindows() 

''' 
Result:  

Lines: 27 

''' 

 

 

4. Building Footprint Segmentation 

import cv2 
import numpy as np 
 
img = cv2.imread('drone_buildings.jpg') 
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 
_, thresh = cv2.threshold(gray, 160, 255, cv2.THRESH_BINARY) 
kernel = np.ones((11,11),np.uint8) 
closed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel) 
contours, _ = cv2.findContours(closed, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) 
for c in contours: 
    if cv2.contourArea(c) > 3000: 
        cv2.drawContours(img, [c], -1, (255,0,0), 3) 
        cv2.imshow('Buildings', img);  

        cv2.waitKey(0);  

cv2.destroyAllWindows() 

 
 

 

5. Crowd Counting in Public Spaces 

import cv2 
import numpy as np 
 
img = cv2.imread('drone_crowd.jpg') 
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 
_,thresh = cv2.threshold(gray,180,255,cv2.THRESH_BINARY_INV) 
kernel = np.ones((5,5),np.uint8) 
opened = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel) 
contours, _ = cv2.findContours(opened, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) 
count = 0 
for c in contours: 
    area = cv2.contourArea(c) 
    if 60 < area < 400:  # people blobs 
        count += 1 
        x,y,w,h = cv2.boundingRect(c) 
        cv2.rectangle(img, (x,y), (x+w,y+h), (0,200,0), 2) 
print(f"Counted people: {count}") 
cv2.imshow('Crowd', img);  

cv2.waitKey(0);  

cv2.destroyAllWindows() 

Result: counted people: 3 

6. QR Code or Marker Detection (for drone navigation) 

import cv2 
 
img = cv2.imread('drone_marker.jpg') 
detector = cv2.QRCodeDetector() 
retval, decoded, points, _ = detector.detectAndDecodeMulti(img) 
if points is not None: 
    for pt in points: 
        pts = pt.astype(int).reshape(-1,2) 
        for i in range(len(pts)): 
            cv2.line(img, tuple(pts[i]), tuple(pts[(i+1)%4]), (255,0,0), 2) 
print("Found QR codes:", decoded) 
cv2.imshow('QR Codes', img);  

cv2.waitKey(0);  

cv2.destroyAllWindows() 

 

7. Built-up/Impervious Surface Extraction 

import cv2 
import numpy as np 
 
img = cv2.imread('urban_aerial.jpg') 
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 
# Otsu's threshold to separate built-up vs green/open areas 
_,mask = cv2.threshold(gray,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU) 
kernel = np.ones((9,9),np.uint8) 
mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel) 
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) 
for c in contours: 
    if cv2.contourArea(c) > 2000: 
        cv2.drawContours(img, [c], -1, (0,0,255), 2) 
cv2.imshow('Built-up', img);  

cv2.waitKey(0);  

cv2.destroyAllWindows() 

Result: 

 

These samples provide practical starting points for many common urban aerial analytics workflows with OpenCV and Python. For advanced detection (e.g. semantic segmentation, vehicle type recognition, change detection), deep learning models or integration with other libraries (TensorFlow, PyTorch) are recommended for production. 

#Codingexercise: https://1drv.ms/w/c/d609fb70e39b65c8/EVcaogAVmtxJsXqpQPQTzVQBIwI8-s6eySAWNquH6noWUw?e=gphjDF

Monday, October 20, 2025

 At the heart of every successful drone mission lies more than just takeoff and landing—it’s the journey in between that defines precision, safety, and insight. Our platform brings that journey to life by offering a suite of intelligent capabilities designed to elevate autonomous drone operations, especially for fleets connected to the public cloud. 

From the moment a mission is conceived, our cloud-native route planning engine steps in to chart optimal paths based on terrain, weather, airspace restrictions, and mission goals. Whether surveying infrastructure, monitoring crops, or supporting emergency response, our system dynamically adapts to real-time conditions, ensuring every drone flies with purpose and precision. 

Weather isn’t just a backdrop—it’s a critical variable. That’s why we integrate live radar feeds, wind forecasts, and thermal data directly into your mission dashboard. Autonomous drones respond intelligently to changing conditions, rerouting or adjusting altitude to maintain safety and data quality. For operators, this means fewer surprises and more confidence in every flight. 

Our interactive map interface transforms mission control into a visual command center. Toggle overlays for vegetation health, search grids, or thermal zones. Use time-based coverage rings to anticipate drone reach and coordinate swarm behavior. It’s not just about seeing the mission—it’s about understanding it in motion. 

Connectivity is the backbone of modern flight. With seamless cloud sync, your drones stream telemetry, imagery, and sensor data in real time. Operators can monitor progress from anywhere, while automated fallback protocols ensure resilience even in patchy signal environments. Every byte of data is securely stored and instantly accessible for analysis, compliance, or storytelling. 

Performance monitoring goes beyond battery levels. Our system tracks payload metrics, signal integrity, and flight dynamics, triggering alerts for anomalies like drift, overheating, or unexpected altitude shifts. Over time, cloud analytics surface patterns that help refine future missions and extend drone longevity. 

Each flight tells a story. Our smart logbook automatically associates captured media with flight metadata—location, time, drone ID—creating a rich archive for audits, training, or client reporting. Whether inspecting a bridge or mapping a floodplain, your data is organized, searchable, and ready to share. 

And because airspace awareness is non-negotiable, we embed FAA UAS Facility Maps, NOTAMs, and dynamic geofencing directly into your workflow. Autonomous drones proactively avoid restricted zones, while operators stay informed with real-time updates and compliance checks. 

Together, these capabilities form a cohesive ecosystem—one that empowers drone operators, enhances autonomous intelligence, and transforms aerial sensing into a strategic advantage. Whether you're managing a single drone or orchestrating a swarm, our platform ensures every flight is smarter, safer, and more impactful. 

Let your drones do more than fly. Let them think, adapt, and deliver. 

Sunday, October 19, 2025

 Sample program for drone world graph: 

import pandas as pd 
import city2graph as c2g 
from city2graph.graph import GraphBuilder 
from city2graph.utils import parse_location 
 
# Load the CSV file 
df = pd.read_csv("drone_objects.csv") 
 
# Parse location into coordinates (assuming location is in "lat,lon" format) 
df[['lat', 'lon']] = df['location'].apply(lambda loc: pd.Series(parse_location(loc))) 
 
# Initialize the graph builder 
builder = GraphBuilder() 
 
# Add nodes for each object 
for _, row in df.iterrows(): 
    node_id = f"obj_{row['object_id']}_frame_{row['frame_id']}" 
    builder.add_node( 
        node_id, 
        timestamp=row['timestamp'], 
        location=(row['lat'], row['lon']), 
        created=row['created'] 
    ) 
 
# Optional: Add edges based on spatial proximity (within 50 meters) or temporal continuity 
builder.connect_nodes_by_proximity(max_distance=50)  # meters 
builder.connect_nodes_by_sequence(time_window=5)     # seconds 
 
# Build the graph 
graph = builder.build() 
 
# Visualize or export the graph 
graph.plot(title="Drone Object Detection Graph") 
graph.export("drone_graph.gml")  # Optional export