Emerging trends:
Constructing an incremental “knowledge base” of a landscape from drone imagery merges ideas from simultaneous localization and mapping (SLAM), structure-from-motion (SfM), and semantic segmentation. Incremental SLAM and 3D reconstruction is suggested in the ORB-SLAM2 paper by Mur-Atal and Tardos in 2017 where a 3D Map is built by estimating camera poses and reconstructing scene geometry from monocular, stereo, or RGB-D inputs. Such SLAM framework can also be extended by fusing in semantic cues to enrich the resulting map with object and scene labels The idea of including semantic information for 3D reconstruction is demonstrated by SemanticFusion written by McCormick et al for ICCV 2017 where they use a Convolutional Neural Network aka CNN for semantic segmentation as their system fuses semantic labels into a surfel-based 3D map, thereby transforming a purely geometric reconstruction into a semantically rich representation of a scene. SemanticFusion helps to label parts of the scene – turning a raw point cloud or mesh into a knowledge base where objects, surfaces and even relationships can be recognized and queries. SfM, on the other hand, helps to stitch multi-view data into a consistent 3D-model where the techniques are particularly relevant for drone applications. Incremental SfM pipelines can populate information about a 3D space based on the data that arrives in the pipeline, but the drones can “walk the grid” around an area of interest to make sure sufficient data is captured to buid the 3D-model from 0 to 100% and the progress can even be tracked. Semantic layer is not added to SfM processing, but semantic segmentation or object detection can be layered on independently overly the purely geometric data. Layering-on additional modules for say, object detection, region classification, or even reasoning over scene changes helps to start with basic geometric layouts and add optinally to build comprehensive knowledge base. Algorithms that crunch these sensor data whether they are images or LiDAR data must operate in real-time and not on batch periodic analysis. They can, however, be dedicated to specific domains such as urban monitoring, agricultural surveying, or environmental monitoring for additional context-specific knowledge.
No comments:
Post a Comment