Tuesday, October 28, 2025

 The drone video sensing platform described in the previous articles makes the case to lean on analytics and agentic retrieval to use fewer images from aerial drone videos to save on cost and increase temporal and spatial awareness. Yet it does not exclude the notion that scaling of processing especially from many sources would require near real-time processing to scale to the size of a UAV swarm. Although the recommended approach for cloud computing is something like: 

cap = cv2.VideoCapture(0) 
while True: 
    ret, frame = cap.read() 
    if not ret: 
        break 
    if should_analyze(frame): 
        result = analyze(frame) 
        consume_result(result) 
cap.release() 

We could modify it to build a producer-consumer system with asynchronous processing of a blocking collection task queue as follows: 

import cv2 
import threading 
import queue 
import time 
 
# Configuration 
MAX_QUEUE_SIZE = 10 
VIDEO_SOURCE = 0  # Use 0 for webcam or path to video file 
NUM_CONSUMERS = 2 
 
# Shared queue simulating I/O completion port 
frame_queue = queue.Queue(maxsize=MAX_QUEUE_SIZE) 
stop_event = threading.Event() 
 
# Producer: reads frames from video source 
def producer(): 
    cap = cv2.VideoCapture(VIDEO_SOURCE) 
    while not stop_event.is_set(): 
        ret, frame = cap.read() 
        if not ret: 
            break 
        try: 
            frame_queue.put(frame, timeout=1) 
            print("[Producer] Frame enqueued") 
        except queue.Full: 
            print("[Producer] Queue full, dropping frame") 
    cap.release() 
    stop_event.set() 
    print("[Producer] Stopped") 
 
# Consumer: processes frames asynchronously 
def consumer(consumer_id): 
    while not stop_event.is_set() or not frame_queue.empty(): 
        try: 
            frame = frame_queue.get(timeout=1) 
            process_frame(frame, consumer_id) 
            frame_queue.task_done() 
        except queue.Empty: 
            continue 
    print(f"[Consumer-{consumer_id}] Stopped") 
 
# Simulated frame processing 
def process_frame(frame, consumer_id): 
    # Example: convert to grayscale and simulate delay 
    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) 
    time.sleep(0.05)  # Simulate processing time 
    print(f"[Consumer-{consumer_id}] Processed frame") 
 
# Launch threads 
producer_thread = threading.Thread(target=producer) 
consumer_threads = [threading.Thread(target=consumer, args=(i,)) for i in range(NUM_CONSUMERS)] 
 
producer_thread.start() 
for t in consumer_threads: 
    t.start() 
 
# Wait for completion 
producer_thread.join() 
for t in consumer_threads: 
    t.join() 

No comments:

Post a Comment