I got the following interview question:
And here is another way to solve the problem
public static void Combine(ref List<IndexedNumber> numbers, ref List<IndexedNumber> candidate, ref List<List<IndexedNumber>> sequences, int level, int start, int n)
{
for (int i = start; i < numbers.Count; i++)
{
if (candidate.Contains(numbers[i]) == false)
{
candidate[level] = numbers[i];
if (candidate.Sum() == n)
sequences.Add(new List<IndexedNumber>(candidate));
if (i < numbers.Count - 1)
Combine(ref numbers, ref candidate, ref sequences, level + 1, start + 1, n);
candidate[level] = new IndexedNumber() { Number = 0, Index = -1 };
}
}
}
Using the following function signature, write a C#
function that prints out every combination of indices using Console.WriteLine()
whose values add up to a specified sum, n. Values of 0 should be ignored.
public void PrintSumCombinations(List<int> numbers,
int n);
·
It’s okay to use additional private functions to
implement the public function
·
Be sure to print out the indices of numbers and
not the values at those indices
·
Don’t worry too much about memory or CPU
optimization; focus on correctness
To help clarify the problem, calling the function with
the following input:
List<int> numbers = new List<int> { 1, 1, 2,
2, 4 };
PrintSumCombinations(numbers, 4);
Should result in the following console output (the
ordering of the different lines isn’t important and may vary by implementation):
0 1 3
2 3
4
Here is my hint: Generate the variations based on permutations and regardless of the content, then check each sequence for the expected sum.
public void Permute(ref List<int> numbers, ref List<int> candidate, ref bool[] used, int n)
{
if (candidate.Sum() == n)
{
candidate.ForEach(x => Console.Write(x.ToString() + " "));
Console.WriteLine();
}
for (int i = 0; i < numbers.Count; i++)
{
if (used[i]) continue;
candidate.Add(numbers[i]);
used[i] = true;
Permute(ref numbers, ref candidate, ref used, n);
candidate.Remove(candidate.Last());
used[i] = false;
}
}
For combinations, we could take different length substrings and permute them. There may be repetitions but we process just the same.Here is my hint: Generate the variations based on permutations and regardless of the content, then check each sequence for the expected sum.
public void Permute(ref List<int> numbers, ref List<int> candidate, ref bool[] used, int n)
{
if (candidate.Sum() == n)
{
candidate.ForEach(x => Console.Write(x.ToString() + " "));
Console.WriteLine();
}
for (int i = 0; i < numbers.Count; i++)
{
if (used[i]) continue;
candidate.Add(numbers[i]);
used[i] = true;
Permute(ref numbers, ref candidate, ref used, n);
candidate.Remove(candidate.Last());
used[i] = false;
}
}
And here is another way to solve the problem
public static void Combine(ref List<IndexedNumber> numbers, ref List<IndexedNumber> candidate, ref List<List<IndexedNumber>> sequences, int level, int start, int n)
{
for (int i = start; i < numbers.Count; i++)
{
if (candidate.Contains(numbers[i]) == false)
{
candidate[level] = numbers[i];
if (candidate.Sum() == n)
sequences.Add(new List<IndexedNumber>(candidate));
if (i < numbers.Count - 1)
Combine(ref numbers, ref candidate, ref sequences, level + 1, start + 1, n);
candidate[level] = new IndexedNumber() { Number = 0, Index = -1 };
}
}
}
No comments:
Post a Comment