Problem statement: Given the root of a binary tree, check whether it is a mirror of itself (i.e., symmetric around its center).
Example 1:
1
2 2
3 4 4 3
Input: root = [1,2,2,3,4,4,3]
Output: true
Example 2:
1
2 2
null 3 null 3
Input: root = [1,2,2,null,3,null,3]
Output: false
Constraints:
The number of nodes in the tree is in the range [1, 1000].
-100 <= Node.val <= 100
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public boolean isSymmetric(TreeNode root) {
List<Integer> serialized = new ArrayList<Integer>();
InorderTraversal(root, serialized);
return IsPalindrome(serialized);
}
public boolean isPalindrome(List<Integer> serialized) {
int i = 0;
int j = serialized.count() - 1;
while (i < j) {
if (serialized.getAt(i) != serialized.getAt(j)) {
return false;
}
i++;
j--;
}
return true;
}
public void InorderTraversal(TreeNode root, List<Imteger> serialized) {
if (root == null) {
serialized.Add(Integer.MinValue);
return;
}
InOrderTraversal(root.left);
serialized.Add(root.val);
InOrderTraversal(root.right);
}
}
#blogpost: https://1drv.ms/w/c/d609fb70e39b65c8/EcVxcTYDkE9Hro_eEthnuH8Bx-PIXIxbdNq2kXKuyr8TdA?e=a1ofbg
No comments:
Post a Comment