In tonight's blog post, we revert to the discussion on open graphs and matrix operations. We talked about matrix multiplication which is written in the form : (a1, a2, ... an in the same row) (x1, x2 ... xn in the same column) as resulting in a1x1 + a2x2 + ... + anxn. Note that this product of matrix can also be represented by A(b1, b2, .. , bn) = Ab1, Ab2, Ab3, .. Abn that is the matrix A acts separately on each column of B.
Row reduction is another operation.
This can be done in one of three different ways :
1) Multiplying a row by non-zero scalar.
2) adding a multiple of one row to another
3) swapping the position of two rows.
Each of these steps are also reversible so if you start from one state and go to the other, you can undo the change. This is called row-equivalent operations.
A matrix is said to be in a row-echelon form if any rows made completely of zeroes lies at the bottom of the matrix and the first non-zero entries of a staircase pattern. The first non-zero entry of the k+1 th row is to the right of the kth row.
If the matrix is in a row-echelon form, then the first non-zero entry of each row is called a pivot and the columns in which pivots appear is called pivot columns.It is always possible to convert a matrix to row-echelon form. The standard algorithm is called Gaussian elimination or row reduction.
The rank of a matrix is the number of pivots in its reduced row-echelon form.
The solution to Ax = 0 gives the pivot variables in terms of the free variables.
Row reduction is another operation.
This can be done in one of three different ways :
1) Multiplying a row by non-zero scalar.
2) adding a multiple of one row to another
3) swapping the position of two rows.
Each of these steps are also reversible so if you start from one state and go to the other, you can undo the change. This is called row-equivalent operations.
A matrix is said to be in a row-echelon form if any rows made completely of zeroes lies at the bottom of the matrix and the first non-zero entries of a staircase pattern. The first non-zero entry of the k+1 th row is to the right of the kth row.
If the matrix is in a row-echelon form, then the first non-zero entry of each row is called a pivot and the columns in which pivots appear is called pivot columns.It is always possible to convert a matrix to row-echelon form. The standard algorithm is called Gaussian elimination or row reduction.
The rank of a matrix is the number of pivots in its reduced row-echelon form.
The solution to Ax = 0 gives the pivot variables in terms of the free variables.
No comments:
Post a Comment