Pattern to detect an anomaly:
import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
from sklearn.datasets import
make_blobs
# we create 40 separable points
X, y = make_blobs(n_samples=40,
centers=2, random_state=6)
# fit the model, do not regularize
for illustration purposes
clf =
svm.SVC(kernel="linear", C=1000)
clf.fit(X, y)
plt.scatter(X[:, 0], X[:, 1], c=y,
s=30, cmap=plt.cm.Paired)
# plot the decision function
ax = plt.gca()
xlim = ax.get_xlim()
ylim = ax.get_ylim()
# create grid to evaluate model
xx = np.linspace(xlim[0], xlim[1],
30)
yy = np.linspace(ylim[0], ylim[1],
30)
YY, XX = np.meshgrid(yy, xx)
xy = np.vstack([XX.ravel(),
YY.ravel()]).T
Z =
clf.decision_function(xy).reshape(XX.shape)
# plot decision boundary and
margins
ax.contour(XX, YY, Z,
colors="k", levels=[-1, 0, 1], alpha=0.5,
linestyles=["--",
"-", "--"])
# plot support vectors
ax.scatter(clf.support_vectors_[:,
0], clf.support_vectors_[:, 1], s=100,
linewidth=1,
facecolors="none", edgecolors="k")
plt.savefig("SOSONEP04PyPlot01.pdf")
No comments:
Post a Comment